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Abstract 

1,4-Bis(I,l,l,3,3,3-hexafluoro-2-hydroxy-2-propyl)benzene forms tri- and tetralithio derivatives which react readily with (CH 3)3SIC! 
or (CH3)2SiCI 2 to form the expected derivatives. Silicon is shown to be weakly coordinated to oxygen in 2,5-bis(trimethylsilyl)-l.4- 
bis(l, l,l,3,3,3-hexafluoro-2-hydroxy-2-propyl)benzene. 

K¢)n¢ords: Silicon; Lithium 

1. Introduction 

In 1979, Perozzi and Martin reported that 
1,1,1,3,3,3-hexafluoro-2-hydroxy-2-phenylpropane, ob- 
tained from Friedel-Crafts condensation of hexafluo- 
roacetone (HFA) with benzene [I] readily lithiates in the 
ortho position to give lithium 1,1,1,3,3,3-hcxafluoroo2- 
(o.lilhiophenyl)-2opropoxide [2] This important result 
has led to the synthesis of a variety of Group 14-16 
derivatives of the iigand, mal,y of which at~e hyperva- 
lent [2,3]. The lithiation of further condensation prod- 
ucts of HFA with benzene such as 1,4-bis(1,1,1,3,3,3- 
hexafluoro.2-hydroxyo2-propyl)benzene, 1, has not been 
previously reported although it should yield suitable 
starting materials for the synthesis of additional 
monomeric and polymeric examples of Groups 14-16 
element hypervalent derivatives. To this end we have 
investigated the lithiation of I and the reaction of its tri- 
and tetralithio derivatives with chlorotrimethylsilane and 
dichlorodimethylsilane, and we report our results at this 
time. 

2. Results and discussion 

As shown in Scheme I, compound I reacts with 
n-butyllithium in the presence of TMEDA to give a 
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mixture of tri- and tetralithiated products which react 
with chlorotrimethylsilane to yield silylated derivatives, 
2 and 3. Compounds 2 and 3 hydrolyze to form a 
mixture of 2-trimethylsilyl- and 2,5-bis(trimethylsilyl)- 
substituted I (4 and $ respectively). As reported in the 
earlier literature [2], the TMEDA concentration (70 to 
90 tool% TMEDA to butyilithium) does not appear to 
affect the yield in this reaction; it does, however, affect 
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Fig. I. owmP view of compound 5. 
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Scheme I. (a) n-C4HoLi. TMEDA. THF-hexane (0 °C to 25 °C; 4 h); (b) (CH ~)~SiCI; (c) t H NMR. CDCI3; 8(ppm); (d) 55% aq. ethanol. 24 h. 

the rate. The hydrolyzed reaction mixture is initially 
obtained as a viscous, brown oil from which pure 4 and 
$ can be isolated chromatographically [4,]. Compounds 2 
and 3 can a l ~  b¢ isolated as a mixture if the reaction is 
worked up without hydrolysis. 

Proton NMR spectroscopy allows ready detection of 
2~$, even when present in complex mixtures (Scheme 
I), The conversion of 2 and 3 to 4 and $ is conveniently 
followed by monitoring the disappearance of the Si~CIt 
resonance at 0.22 ppm as the arylhcxalluoro-2o 
propoxyosilyl bonds are hydrolyzed. The presence of the 
ootrimethylsilyl group slows this reaction noticeably:, the 
1o(I,l,l,3,3,3ohexafluoro-2-trimethylsiloxy°2.propyl) 
group in 2 requires 24 h for complete hydrolysis, 
whereas the analogous group in the 4-positio,: m com- 
pound Z is hydrolyzed within ! or 2 h, 

The crystal structure of 5 (Fig. I) [5] shows a silicon- 
to-oxygen distance, [Si(I)=O( !)], of 2.765 ,~, which is 

where the intermolecular Si-O distance is 2.721 /~, and 
indicates that the oxygen is weakly coordinated to the 
silicon atom [7]. There is also distortion toward trigonai 
bipyramidal geometry in the trimethylsilyl groups (Fig. 
I). The C(4)-Si(I)=C(6)/C(6A) bond angles are 
113.1(2) ° and the C(6)-Si(I)-C(6A) angle is 113.9 
(3)°: whereas, the C(4)=Si(I)=C(7) bond angle is 
106.3(3) ° and the C(6)~oSi(I)=C(7) angle is 104.8(3) °. 
These distortions toward trigonal bipyramidal geometry 
at silicon confirm an interaction between silicon and 
oxygen in $. 

The interaction between the hydroxyl group and the 
silicon atom in 6 was first suggested in the mechanism 
proposed by Yamamoto et al. for the facile conversion 
of 6 to 7 in polar aprotic solvents (Eq. (I)) [8]. Their 
proposed pentacoordinate intermediate (or transition 
state) in Eq. (I) is consistent with the crystal structure 
of $. 
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considerably shorter than the sum of the silicon and 
oxygen van der Waals radii (3.60 ,~) [6]. It is, however, 
typical of associated compounds such as silyi acetate 

We also ob~rve quantitative cyclization of 4 and 5 
when heated for 2 or 3 h in the presence of anhydrous 
acetonitriie (Eq. (2)). Bicyclic ~, ~ ing  much less solu- 
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ble than monocyclic 8, precipitates from the reaction 
mixture upon cooling, providing a convenient separa- 
tion of the two compounds. 
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Compounds 2 and 3 (see Scheme 1) can also be 
pyrolyzed at 180 °C (0.2 Ton') to give cyclized products 
8 (30%) and 9 (10%) in low yield. Tetramethylsilane is 
the expected by-product of this ring closure, but it has 
not yet been isolated. 

It is also possible to obtain 8 and 9 by lithiating 1 
and treating the mixture of tri- and tetralithio derivatives 
with dimethyldichlorosilane [9]. The ratio of g to 9 is 
affected by lithiation conditions. If the reaction is started 
at 0 °C and allowed to warm to room temperature as it 
stirs, g is isolated in 50% yield while 9 is obtained in 
11% yield. When the reaction is conducted without 
external cooling 8 is obtained in 40% yield and 9 in 
20% yield. Conditions were not found which would 
give 8 or 9 exclusively, and the compounds are most 
efficiently separated by flash chromatography on an 
alumina column using hcnzene as the eluant. 
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